Approximation algorithms for two variants of correlation clustering problem

2020 
Correlation clustering problem is a clustering problem which has many applications such as protein interaction networks, cross-lingual link detection, communication networks, and social computing. In this paper, we introduce two variants of correlation clustering problem: correlation clustering problem on uncertain graphs and correlation clustering problem with non-uniform hard constrained cluster sizes. Both problems overcome part of the limitations of the existing variants of correlation clustering problem and have practical applications in the real world. We provide a constant approximation algorithm and two approximation algorithms for the former and the latter problem, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []