Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity

2006 
Background Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4) co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE): APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS) leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR) APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    34
    Citations
    NaN
    KQI
    []