A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer

2021 
Bladder cancer (BC) is the ninth most common malignant tumor. We constructed a risk signature using immune-related gene pairs (IRGPs) to predict the prognosis of BC patients. The mRNA transcriptome, simple nucleotide variation and clinical data of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database (TCGA-BLCA). The mRNA transcriptome and clinical data were also extracted from Gene Expression Omnibus (GEO) datasets (GSE31684). A risk signature was built based on the IRGPs. The ability of the signature to predict prognosis was analyzed with survival curves and Cox regression. The relationships between immunological parameters [immune cell infiltration, immune checkpoints, tumor microenvironment (TME) and tumor mutation burden (TMB)] and the risk score were investigated. Finally, gene set enrichment analysis (GSEA) was used to explore molecular mechanisms underlying the risk score. The risk signature utilized 30 selected IRGPs. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the GSE31684 dataset to validate the signature. Close relationships were found between the risk score and immunological parameters. Finally, GSEA showed that gene sets related to the extracellular matrix (ECM), stromal cells and epithelial-mesenchymal transition (EMT) were enriched in the high-risk group. In the low-risk group, we found a number of immune-related pathways in the enriched pathways and biofunctions. We used a new tool, IRGPs, to build a risk signature to predict the prognosis of BC. By evaluating immune parameters and molecular mechanisms, we gained a better understanding of the mechanisms underlying the risk signature. This signature can also be used as a tool to predict the effect of immunotherapy in patients with BC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    0
    Citations
    NaN
    KQI
    []