Evaluating the response of ẟ 13 C in Haloxylon ammodendron , adominant C 4 species in Asian desert ecosystem, to water and nitrogenaddition as well as the availability of its ẟ 13 C as the indicator of wateruse-efficiency

2020 
Abstract. Variations in precipitation and atmospheric N deposition affect water and N availability in desert, and thus may have significant effects on desert ecosystems. Haloxylon ammodendron is a dominant plant in Asian desert, and addressing its physiological acclimatization to the changes in precipitation and N deposition can provide an insight into how desert plants adapt extreme environment by physiological adjustment. Carbon isotope ratio (ẟ13C) in plants has been suggested as a sensitive long-term indicator of physiological acclimatization. Therefore, this study evaluated the effect of precipitation change and increasing atmospheric N depositon on ẟ13C of H. ammodendron. Furthermore, Haloxylon ammodendron is a C4 plant, whether its ẟ13C can indicate water use-efficiency (WUE) has not been addressed. In the present study, we designed a field experiment with a completely randomized factorial combination of N and water, and measured ẟ13C, gas exchange and WUE of the assimilating branches of H. ammodendron. ẟ13C in H. ammodendron remained stable under N and water supply, while N addition, water addition and their interaction affected gas exchange and WUE in H. ammodendron. In addition, ẟ13C had no correlation with WUE. This result are associated with the irrelevance between ẟ13C and ci/ca, which might be caused by a special value (0.37) of the degree of bundle-sheath leakiness (φ) or a lower activity of carbonic anhydrase (CA) of H. ammodendron. Thus, ẟ13C of H. ammodendron cannot be used for indicating its WUE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    1
    Citations
    NaN
    KQI
    []