language-icon Old Web
English
Sign In

On the $S^1$-fibred nil-Bott Tower

2011 
We shall introduce a notion of $S^1$-fibred nilBott tower. It is an iterated $S^1$-bundles whose top space is called an $S^1$-fibred nilBott manifold and the $S^1$-bundle of each stage realizes a Seifert construction. The nilBott tower is a generalization of real Bott tower from the viewpoint of fibration. In this note we shall prove that any $S^1$-fibred nilBott manifold is diffeomorphic to an infranilmanifold. According to the group extension of each stage, there are two classes of $S^1$-fibred nilBott manifolds which is defined as finite type or infinite type. We discuss their properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []