Feasibility Analysis of EV+X Storage to Support Power System Frequency

2021 
With the fast growth of renewable energy generation, the power system faces the challenge of low inertia. Lower system inertia makes it more challenging to keep the frequency stable, and the conventional frequency response mechanism is not capable of ensuring frequency within the limit. In this paper, a new frequency response mechanism is proposed to help to improve the frequency performance, where electric vehicles (EV) are used as energy storage, and they will cooperate with existing primary frequency response (PFR) to form an EV+X storage supporting power system frequency. This approach is proposed based on rigorous mathematical derivation, where the relationship between frequency and active power is quantitively analysed. To validate the new mechanism’s feasibility, simulation models are built to simulate the frequency behaviour after a big disturbance, and a series of tests are conducted. Both technical and economic benefits are investigated, considering the difference in EV control strategies and the proportion of EV responses. The result shows that EV+X storage can be a promising solution to the frequency stability problem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []