Optimal non-anticipative scenarios for nonlinear hydro-thermal power systems

2019 
Abstract The long-term operation of hydro-thermal power generation systems is modeled by a large-scale stochastic optimization problem that includes nonlinear constraints due to the head computation in hydroelectric plants. We do a detailed development of the problem model and state it by a non-anticipative scenario analysis, leading to a large-scale nonlinear programming problem. This is solved by a filter algorithm with sequential quadratic programming iterations that minimize quadratic Lagrangian approximations using exact hessians in L∞ trust regions. The method is applied to the long-term planning of the Brazilian system, with over 100 hydroelectric and 50 thermoelectric plants, distributed in 5 interconnected subsystems. This problem with 50 synthetically generated inflow scenarios and a horizon of 60 months, amounting to about one million variables and 15000 nonlinear constraints was solved by the filter algorithm in a standard 2016 notebook computer in 10 h of CPU.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []