Scaling Navier-Stokes equation in nanotubes

2013 
On one hand, classical Monte Carlo and molecular dynamics simulations have been very useful in the study of liquids in nanotubes, enabling a wide variety of properties to be calculated in intuitive agreement with experiments. On the other hand, recent studies indicate that the theory of continuum breaks down only at the nanometer level; consequently flows through nanotubes still can be investigated with Navier-Stokes equations if we take suitable boundary conditions into account. The aim of this paper is to study the statics and dynamics of liquids in nanotubes by using methods of nonlinear continuum mechanics. We assume that the nanotube is filled with only a liquid phase; by using a second gradient theory the static profile of the liquid density in the tube is analytically obtained and compared with the profile issued from molecular dynamics simulation. Inside the tube there are two domains: a thin layer near the solid wall where the liquid density is non-uniform and a central core where the liquid dens...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    27
    Citations
    NaN
    KQI
    []