Differential quadrature time element method for structural dynamics

2012 
An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordinary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps. Two methods of imposing initial conditions are given, which avoids the tediousness when derivative initial conditions are imposed, and the numerical comparisons indicate that the first method, in which the analog equations of initial displacements and velocities are used to directly replace the differential quadrature (DQ) analog equations of ODEs at the first and the last sampling points, respectively, is much more accurate than the second method, in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points. On the contrary to the conventional step-by-step direct integration schemes, the solutions at all sampling points can be obtained simultaneously by DQTEM, and generally, one differential quadrature time element may be enough for the whole time domain. Extensive numerical comparisons validate the efficiency and accuracy of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    6
    Citations
    NaN
    KQI
    []