Approximation Algorithms for Cost-Robust Discrete Minimization Problems Based on Their LP-Relaxations

2020 
We consider robust discrete minimization problems where uncertainty is defined by a convex set in the objective. Assuming the existence of an integrality gap verifier with a bounded approximation guarantee for the LP relaxation of the non-robust version of the problem, we derive approximation algorithms for the robust version under different types of uncertainty, including polyhedral and ellipsoidal uncertainty.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []