Catalyst versus Substrate Control of Forming (E)-2-Alkenes from 1-Alkenes Using Bifunctional Ruthenium Catalysts
2018
Here we examine in detail two catalysts for their ability to selectively convert 1-alkenes to (E)-2-alkenes while limiting overisomerization to 3- or 4-alkenes. Catalysts 1 and 3 are composed of the cations CpRu(κ2-PN)(CH3CN)+ and Cp*Ru(κ2-PN)+, respectively (where PN is a bifunctional phosphine ligand), and the anion PF6–. Kinetic modeling of the reactions of six substrates with 1 and 3 generated first- and second-order rate constants k1 and k2 (and k3 when applicable) that represent the rates of reaction for conversion of 1-alkene to (E)-2-alkene (k1), (E)-2-alkene to (E)-3-alkene (k2), and so on. The k1:k2 ratios were calculated to produce a measure of selectivity for each catalyst toward monoisomerization with each substrate. The k1:k2 values for 1 with the six substrates range from 32 to 132. The k1:k2 values for 3 are significantly more substrate-dependent, ranging from 192 to 62 000 for all of the substrates except 5-hexen-2-one, for which the k1:k2 value was only 4.7. Comparison of the ratios for ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
5
Citations
NaN
KQI