Characterization of Filippov representable maps and Clarke subdifferentials

2020 
The ordinary differential equation $\dot{x}(t)=f(x(t)), \; t \geq 0 $, for $f$ measurable, is not sufficiently regular to guarantee existence of solutions. To remedy this we may relax the problem by replacing the function $f$ with its Filippov regularization $F_{f}$ and consider the differential inclusion $\dot{x}(t)\in F_{f}(x(t))$ which always has a solution. It is interesting to know, inversely, when a set-valued map $\Phi$ can be obtained as the Filippov regularization of a (single-valued, measurable) function. In this work we give a full characterization of such set-valued maps, hereby called Filippov representable. This characterization also yields an elegant description of those maps that are Clarke subdifferentials of a Lipschitz function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []