Electro-mechanical transfection for non-viral primary immune cell engineering

2021 
Non-viral approaches to transfection have emerged a viable option for gene transfer. Electro-mechanical transfection involving use of electric fields coupled with high fluid flow rates is a scalable strategy for cell therapy development and manufacturing. Unlike purely electric field-based or mechanical-based delivery methods, the combined effects result in delivery of genetic material at high efficiencies and low toxicity. This study focuses on delivery of reporter mRNA to show electro-mechanical transfection can be used successfully in human T cells. Rapid optimization of delivery to T cells was observed with efficiency over 90% and viability over 80%. Confirmation of optimized electro-mechanical transfection parameters was assessed in multiple use cases including a 50-fold scale up demonstration. Transcriptome and ontology analysis show that delivery, via electro-mechanical transfection, does not result in gene dysregulation. This study demonstrates that non-viral electro-mechanical transfection is an efficient and scalable method for cell and gene therapy engineering and development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []