Simulated bioavailability of phosphorus from aquatic macrophytes and phytoplankton by aqueous suspension and incubation with alkaline phosphatase

2018 
Abstract Bioavailability of phosphorus (P) in biomass of aquatic macrophytes and phytoplankton and its possible relationship with eutrophication were explored by evaluation of forms and quantities of P in aqueous extracts of dried macrophytes. Specifically, effects of hydrolysis of organically-bound P by the enzyme alkaline phosphatase were studied by use of solution 31 P-nuclear magnetic resonance (NMR) spectroscopy. Laboratory suspensions and incubations with enzymes were used to simulate natural releases of P from plant debris. Three aquatic macrophytes and three phytoplankters were collected from Tai Lake, China, for use in this simulation study. The trend of hydrolysis of organic P (P o ) by alkaline phosphatase was similar for aquatic macrophytes and phytoplankton. Most monoester P (15.3% of total dissolved P) and pyrophosphate (1.8%) and polyphosphate (0.4%) and DNA (3.2%) were transformed into orthophosphate (14.3%). The major forms of monoester P were glycerophosphate (8.8%), nucleotide (2.5%), phytate (0.4%) and other monoesters P (3.6%). Proportions of P o including condensed P hydrolyzed in phytoplankton and aquatic macrophytes were different, with the percentage of 22.6% and 6.0%, respectively. Proportion of P o hydrolyzed in debris from phytoplankton was approximately four times greater than that of P o from aquatic macrophytes, and could be approximately twenty-five times greater than that of P o in sediments. Thus, release and hydrolysis of P o , derived from phytoplankton debris would be an important and fast way to provide bioavailable P to support cyanobacterial blooming in eutrophic lakes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    26
    Citations
    NaN
    KQI
    []