Facile Preparation of Carbon Shells-Coated O-Doped Molybdenum Carbide Nanoparticles as High Selective Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions

2019 
Electrochemical nitrogen reduction reaction (NRR) has been considered as a promising alternative to the traditional Haber–Bosch process for the preparation of ammonia (NH3) under ambient conditions. The development of cost-effective electrocatalysts with suppressive activity for hydrogen evolution reaction is critical for improving the efficiency of NRR. Herein, oxygen-containing molybdenum carbides (O-MoC) embedded in nitrogen-doped carbon layers (N-doped carbon) can be easily fabricated by pyrolyzing the chelate of dopamine and molybdate. A rate of NH3 formation of 22.5 μg·h–1·mgcat–1 is obtained at −0.35 V versus reversible hydrogen electrode with a high faradaic efficiency of 25.1% in 0.1 mM HCl + 0.5 M Li2SO4. Notably, the synthesized O-MoC@NC-800 also exhibits high selectivity (no formation of hydrazine) and electrochemical stability. The moderate electron structure induced by the interaction between O-MoC and N-doped carbon shells can effectively weaken the activity of hydrogen evolution reaction a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    50
    Citations
    NaN
    KQI
    []