50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application☆

2013 
Abstract The theory on the intensities of 4f→4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has become a centerpiece in rare-earth optical spectroscopy over the past five decades. Many fundamental studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a wide range of rare-earth-doped materials, many of them with important applications in solid-state lasers, optical amplifiers, phosphors for displays and solid-state lighting, upconversion and quantum-cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–Ofelt theory in order to properly apply it to practical problems. We first present the formalism for calculating the wavefunctions of 4f electronic states in a concise form and then show their application to the calculation and fitting of 4f→4f transition intensities. The potential, limitations and pitfalls of the theory are discussed, and a detailed case study of LaCl 3 :Er 3+ is presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    170
    References
    216
    Citations
    NaN
    KQI
    []