Thermal stability study of HFO-1234ze(E) for supercritical organic Rankine cycle: Chemical kinetic model approach through decomposition experiments

2020 
Abstract The supercritical organic Rankine cycle (SORC) is considered as a potential technique for converting heat waste resources to electricity. Owing to its low global warming potential, HFO-1234ze(E) (trans-1,3,3,3-tetrafluoroprop-1-ene) is a suitable working fluid for the SORC system. This paper proposes a simple kinetic method for evaluating the thermal decomposition of HFO-1234ze(E) based on the temperatures and pressures in the SORC loop. A long-term decomposition test conducted at temperatures of 433.15–473.15 K under a pressure of 5.0 MPa was used to establish a kinetic equation based on the first-order kinetic model. At 423.15 K, in the high-temperature region of the SORC loop, the decomposition rate of HFO-1234ze(E) was only 1.25% for the 50-year continuous running cycle. When the temperature of the high-temperature region increased by 20 K and 40 K, decompositions of HFO-1234ze(E) significantly increased to 5.24% and 18.40%, respectively, which highlights the high sensitivity of the thermal decomposition rate toward the temperature in the SORC loop.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []