Dysregulation of hippocampal adult-born immature neurons disrupts a brain-wide network for spatial memory

2020 
Mounting evidence suggests that cognitive deficits associated with various neurological disorders may arise in part from a small population of dysregulated adult-born neurons in the dentate gyrus (DG). How these dysregulated adult-born neurons contribute to brain-wide network maladaptation and subsequent cognitive deficits remains unknown. Using an established mouse model with a small number of time-stamped dysregulated adult-born immature neurons and spatial memory deficits, we performed resting state functional magnetic resonance imaging and found that approximately 500 deficient immature neurons (<0.1% of total DG granule neurons) are sufficient to induce a significant decrease in the functional connectivity between DG and insular cortex (IC), two brain regions without direct anatomical connections. Furthermore, using a combination of rabies-based retrograde tracing and in vivo fiber photometry recording, we demonstrated that dysregulated adult-born neurons induce aberrant activity and synchrony in local hippocampal CA3 and CA1 regions, as well as distal medial-dorsal thalamus and IC regions during a spatial memory process. These results suggest that a few hundred dysregulated adult-born immature neurons can impact brain-wide network dynamics across several anatomically discrete regions and collectively contribute to impaired cognitive functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []