Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China

2014 
Tree biomass was investigated in an age-sequence of secondary lacebark pine (Pinus bungeana) forests to understand biomass partitioning patterns during stand development. Mean biomass of each tree component increased steadily as stands aged. Average growth rates and ratios of tree biomass to stand age increased with age. The ratio of below- to above-ground biomass remained relatively constant independent of stand age. Compared to DBH-H allometric equations, the DBH-only equations performed slightly better and are more efficient to apply. These new equations for lacebark pine are an important supplement to China’s national tree biomass equations. These equations and the findings on biomass partitioning patterns during stand development are applicable for the accurate estimation of ecosystem carbon accounting and will contribute to the sustainable management of lacebark pine forests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    5
    Citations
    NaN
    KQI
    []