Optoelectronic Properties of Tin-Lead Halide Perovskites.

2021 
Mixed tin-lead halide perovskites have recently emerged as highly promising materials for efficient single- and multi-junction photovoltaic devices. This Focus Review discusses the optoelectronic properties that underpin this performance, clearly differentiating between intrinsic and defect-mediated mechanisms. We show that from a fundamental perspective, increasing tin fraction may cause increases in attainable charge-carrier mobilities, decreases in exciton binding energies, and potentially a slowing of charge-carrier cooling, all beneficial for photovoltaic applications. We discuss the mechanisms leading to significant bandgap bowing along the tin-lead series, which enables attractive near-infrared bandgaps at intermediate tin content. However, tin-rich stoichiometries still suffer from tin oxidation and vacancy formation which often obscures the fundamentally achievable performance, causing high background hole densities, accelerating charge-carrier recombination, lowering charge-carrier mobilities, and blue-shifting absorption onsets through the Burstein-Moss effect. We evaluate impacts on photovoltaic device performance, and conclude with an outlook on remaining challenges and promising future directions in this area.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    123
    References
    7
    Citations
    NaN
    KQI
    []