Somatic mosaicism in sporadic retinoblastoma

2021 
Background. Sporadic retinoblastoma develops as a result of de novo mutations in both alleles of the RB1 gene. Often in sporadic retinoblastoma, the initial mutation in RB1 is mosaic, that is, it is formed in a postzygotic, early embryonic cell, which leads to an uneven distribution of mutant clones between different tissues of the body. The ability to identify a mosaic variant of a mutation in the RB1 gene is important for both medical genetic counseling and clinical management of patients, since mosaicism affects the development of the clinical picture of the disease, the risk of developing a tumor in the other eye, as well as other tumors, and the risk of mutation transmission to the next generation. Aim: to establish the frequency and spectrum of somatic mosaic mutations in the RB1 gene in patients with sporadic retinoblastoma and to quantify the content of the mutant allele in cases with mosaicism. Methods. The study was carried out on the DNA of blood lymphocytes from patients with sporadic retinoblastoma. Screening of point mutations, small insertions/deletions in the RB1 gene was performed by semiconductor high-throughput parallel sequencing (NGS). Exclusion of gross deletions in the RB1 gene was performed by MLPA. To search for mosaic mutations with a very low representation (less than 10%) of the mutant allele, an in-depth analysis of the NGS data was developed an in-house algorithm based on bioinformatic and statistical approaches. To verify mosaic pathogenic mutations identified with NGS, Sanger sequencing was used. Results. Mosaic mutations were found more common among patients with sporadic unilateral form of retinoblastoma than in those with sporadic bilateral form; the differences are statistically significant. At the same time, the frequencies of mosaic mutations with a high and low representation of mutant alleles between the groups of patients with unilateral and bilateral retinoblastoma did not differ significantly. All mosaic mutations are null alleles; mosaic missense mutations were not found in our patients’ cohort. No mosaic mutations were detected in the 1st and 2nd exons of the RB1 gene, located proximal to the alternative promoter, the imprinting of which determines the penetrance of mutations depending on the parental origin of the mutant allele. Conclusion. The use of deep high-throughput parallel sequencing in combination with an improved algorithm for analyzing the NGS results, aimed at identifying mosaic mutations, increases the efficiency of DNA diagnostics of retinoblastoma, contributing to the improvement of medical genetic counseling and treatment of patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []