Insights into Membrane Protein–Lipid Interactionsfrom Free Energy Calculations
2019
Integral membrane proteins are regulated
by specific interactions
with lipids from the surrounding bilayer. The structures of protein–lipid
complexes can be determined through a combination of experimental
and computational approaches, but the energetic basis of these interactions
is difficult to resolve. Molecular dynamics simulations provide the
primary computational technique to estimate the free energies of these
interactions. We demonstrate that the energetics of protein–lipid
interactions may be reliably and reproducibly calculated using three
simulation-based approaches: potential of mean force calculations,
alchemical free energy perturbation, and well-tempered metadynamics.
We employ these techniques within the framework of a coarse-grained
force field and apply them to both bacterial and mammalian membrane
protein–lipid systems. We demonstrate good agreement between
the different techniques, providing a robust framework for their automated
implementation within a pipeline for annotation of newly determined
membrane protein structures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
71
References
37
Citations
NaN
KQI