Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment

2017 
Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4 + T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    7
    Citations
    NaN
    KQI
    []