Optimized Control for Human-Multi-Robot Collaborative Manipulation via Multi-Player Q-learning

2021 
Abstract In this paper, optimized interaction control is investigated for human-multi-robot collaboration control problems, which cannot be described by the traditional impedance controller. To realize global optimized interaction performance, the multi-player non-zero sum game theory is employed to obtain the optimized interaction control of each robot agent. Regarding the game strategies, Nash equilibrium strategy is utilized in this paper. In human-multi-robot collaboration problems, the dynamics parameters of the human arm and the manipulated object are usually unknown. To obviate the dependence on these parameters, the multi-player Q-learning method is employed. Moreover, for the human-multi-robot collaboration problem, the optimized solution is difficult to resolve due to the existence of the desired reference position. A multi-player Nash Q-learning algorithm considering the desired reference position is proposed to deal with the problem. The validity of the proposed method is verified through simulation studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []