Synthesis and characterization of a Eu 3+ ‐activated Ba 2–x V 2 O 7 :xEu 3+ phosphor using a hydrothermal method: a potential material for near‐UV‐WLED applications

2021 
Eu3+ -activated Ba2 V2 O7 (Ba2-x V2 O7 :xEu3+ ) phosphor materials were synthesized using a hydrothermal method and different concentrations of europium (x = 0.01, 0.02, 0.03, 0.04, and 0.05%). Phase purity, structural, morphological, optical, and luminescence characteristics of the as-synthesized phosphors were studied using powder X-ray diffraction (XRD), high resolution scanning electron microscopy, UV-visible spectroscopy, and fluorescence spectrometry. The recorded XRD patterns of the as-synthesized phosphors were indexed and predicted to be a triclinic structure. A cube-like morphology was obtained for the as-prepared samples. Broad absorption in the UV region from 200 nm to 380 nm was observed and the good transparency in the visible region at 400-800 nm originated from the [VO4 ]3- group charge transfer (CT) transition. The broad emission peak centred at 499 nm was due to the CT band of the [VO4 ]3- group. Also, a sharp peak observed at 613 nm was due to the electric dipole transition of 5 D0 →7 F2 of Eu3+ ions that occupied the lattice sites without inversion symmetry for all concentrations. The colour qualities of the as-prepared samples were calculated using Commission International de l'Eclairage coordinates. The colour-rending index (CRI) value was 86 for the Ba1.97 V2 O7 :0.03Eu3+ phosphor. Furthermore, a WLED with a high CRI value of 95 was achieved by coupling the 3 W 356 nm near-UV light-emitting diode (LED) chip with the Ba2-x V2 O7 :xEu3+ phosphor. These results suggested that the as-prepared phosphor materials are potential candidates for fabrication of near-UV chip excited WLEDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    2
    Citations
    NaN
    KQI
    []