Highly Hybridizable Spherical Nucleic Acids by Tandem Glutathione Treatment and Polythymine Spacing
2016
Gold nanoparticle (AuNP)-templated spherical nucleic acids (SNAs) have been demonstrated as an important functional material in bionanotechnology. Fabrication of SNAs having high hybridization capacity to their complementary sequences is critical to ensure their applicability in areas such as antisense gene therapy and cellular sensing. The traditional salt-aging procedure is effective but tedious, requiring 1–3 days to complete. The rapid low-pH assisted protocol is efficient, but causes concerns related to nonspecific DNA adsorption to the AuNP core. To address these issues, we systematically compared the SNAs prepared by these two methods (salt-aging method and low-pH protocol). In terms of the number of complementary DNA that each SNA can bind and the average binding affinity of each thiolated DNA probe to its complementary strand, both methods yielded comparable hybridizability, although higher loading capacity was witnessed with SNAs made using the low-pH method. Additionally, it was found that nons...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
64
References
6
Citations
NaN
KQI