Diameter and tensile strain measurements of optical nanofibers using Brillouin reflectometry

2018 
We demonstrate a simple and efficient technique that allows for a complete characterization of silica-based tapered optical fibers with sub-wavelength diameters ranging from 0.5 μm to 1.2 μm. The technique is based on Brillouin reflectometry using a single-ended heterodyne detection. It has a high precision sensitivity down to 1% owing to the strong dependence of the Brillouin spectrum on the taper diameter. We further investigate the tensile strain dependence of the Brillouin spectrum for an optical microfiber up to 5% of elongation. The results show strong dependences of several Brillouin resonances with different strain coefficients ranging from 290 MHz/% to 410 MHz/% with a specific nonlinear deviation at high strain. Those results therefore show that optical micro and nanofibers could find potential application for sensitive strain optical sensing.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []