Integration of piezoelectric polymer transducers into microsystems for sensing applications

2012 
A polymer-based sensor for low frequency acceleration detection is fabricated by using microinjection molding technologies. Finite Element simulations and characterization of the sensing functionality are done. Due to an out-of-plane acceleration a force is applied to a seismic mass (length and width each 3.2 mm, thickness 1 mm), which leads to a deformation of a connected plate with dimensions of 1 mm × 1 mm × 50 μm. Thus, charge separation at the electrodes of integrated piezoelectric polyvinylidene fluoride (PVDF) copolymer sheets occur and can be measured as sensor signal. A charge sensitivity of 0.57 pC/g is determined which is in good agreement with the simulation results. A resonance frequency of 660 Hz was measured. Furthermore, the sensor concept as well as preparation technologies to assemble a compound structure containing piezoelectric layers and the system integration by micro injection molding are discussed. In addition, different bonding techniques for the assembly of the functional components are investigated and described.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    17
    Citations
    NaN
    KQI
    []