Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets.

2021 
Abstract The structuring of liquid-liquid and liquid-air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid-liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []