Liquid water transport in PEMFC cathode with symmetrical biomimetic flow field design based on Murray's law

2021 
Abstract Water management in the flow field as well as the flooding process in the gas diffusion and catalyst layers enormously influence proton exchange membrane fuel cells (PEMFCs) performance and reliability. Researchers have developed many different designs for flow channels that can be used to distribute fuel or oxidant in PEMFCs (proton exchange membrane fuel cells). Among these designs, novel biomimetic designs have captured special attentions from researchers due to their capability of distributing fluids effectively. This study presents an investigation of the liquid water transport within a porous layer and a symmetrical biomimetic flow field based on Murray's law. The volume of fluid (VOF) method is employed, and the dynamic contact angle (DCA) effects are also considered for better prediction of water distribution. The water transport process and water distribution inside the porous layer and flow field are obtained from the simulation results. Recommendations are given for this type of flow field design based on the behaviors of liquid water in the porous layer and flow field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []