Analytical Elastoplastic Solutions for Deep-buried Circular Tunnels Under Asymmetric Load

2021 
The elastoplastic analysis of the surrounding rock of a circular tunnel is a very classic rock and soil mechanics problem. Previous scholars usually studied the situation under axisymmetric load, and they usually did not take the non-axisymmetric load distribution under the influence of ground stress and lateral pressure into account, which greatly affected its application in engineering practice. Approximate analytical solutions for calculating the plastic zone range, stress field and displacement field of the surrounding rock of a circular tunnel are inseparable from the consideration of the strength reduction and volumetric dilatancy characteristics of the rock material. The elastic-softening-residual plastic triple linear stress-strain model and the Mohr-Coulumb failure criterion are involved. The approximate analytical solutions of the residual stress field, strain field, displacement field and radius of the plastic zone in the elastic zone, plastic softening zone and surrounding plastic zone of the circular tunnel surrounding rock under axisymmetric load are deduced. The analytical solutions are valid only when the plastic zone is large and the lateral pressure coefficients 1≤λ<3. The approximate analytical method is close to the calculation result of finite element method and can replace the finite element method to carry out simple elastic-plastic analysis of surrounding rock.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []