Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation
2017
Copolymers based on glassy and rubbery units have been developed to take advantage of both domains to enhance solubility and diffusivity. In this study, a series of gas separation membranes from polysulfone (PSF) containing ethylene glycol were synthesized via nucleophilic substitution polycondensation. The structures of copolymers were characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectra, and thermal gravity analysis. The permeability and selectivity of the membranes were studied at different temperatures of 25–55 °C and pressures of 0.5–1.5 atm using single gases CO2 and CH4. Gas permeation measurements showed that copolymers with different contents of poly(ethylene glycol) exhibited different separation performances. For example, the membrane from PSF-PEG2000-20 containing 20 wt% poly(ethylene glycol) showed better performance in terms of ideal selectivity over the other seven copolymer membranes. The highest ideal CO2/CH4 selectivity was 43.0 with CO2 permeability of 6.4 Barrer at 1.5 atm and 25 °C.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
45
Citations
NaN
KQI