Basic studies of 3-5 high efficiency cell components. Annual subcontract report, 15 August 1989--14 August 1990

1993 
This project`s objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell ``building blocks`` such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project`s goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we`ve teamed a great deal about heavy doping effects in p{sup +} and n{sup +} GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We`ve learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges.more » Finally, we`ve demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []