Extraordinary toughening enhancement in nonstoichiometric vanadium carbide

2022 
Abstract Improving fracture toughness, which has gone through decades, is a long-standing topic and is particularly important for safety-critical applications. In refractory transition metal carbides (RTMCs), remarkable toughening is usually achieved by adding metallic binders, however, resulting in a drastic deterioration of hardness and thermal stability. Here, we report a novel self-toughening strategy for synthesizing high-toughness RTMCs. Using mechanical alloying (MA) and spark plasma sintering (SPS), we synthesized nonstoichiometric VC1-x (0.5 ≤ 1-x ≤ 0.6) with a quasi-monophasic microstructure containing a carbon-rich matrix and carbon-poor precipitates. Significantly, the VC0.5 sintered at 1400°C shows a good trade-off of high hardness of 20.5±0.5 GPa and fracture toughness of 7.1±0.2 MPa m1/2. The fracture toughness of VC0.5 increases by more than 100% accompanied by 7% hardness loss, compared with that of stoichiometric VC. The microstructure characterization and fracture behavior analysis demonstrate that the extraordinary toughening enhancement is attributed to a self-toughening strategy combined with coherency toughening and amorphous bridging toughening, which may offer an efficient pathway for developing high-performance structural ceramics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []