Achromatic metasurface doublet with a wide incident angle for light focusing

2020 
Benefiting from the excellent capabilities of arbitrarily controlling the phase, amplitude and polarization of the electromagnetic wave, metasurfaces have attracted much attention and brought forward the revolution of fields ranging from device fabrications to optical applications. Cascaded metasurfaces have been demonstrated to correct the monochromatic aberration and enable a near-diffraction-limited focusing spot over a wide incident angle. However, they can only work under the design wavelength and suffer from the axial chromatic aberration at another wavelength. Here, an achromatic metasurface doublet is proposed to eliminate the axial achromatic aberration and enable high-quality focusing with a wide incident angle at distinct wavelengths. It consists of square nanopillar arrays with spatially varying width to simultaneously realize wavelength-dependent phase controls. The constructed metasurface doublet is further verified numerically and near-diffraction-limited foci are exactly formed at the same plane with an incident angle up to 20° for design wavelengths. We expect that our proposed approach can find optical applications in the fields of holograms, photograms, microscopy and machine vision.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []