In situ extraction of intracellular l-asparaginase using thermoseparating aqueous two-phase systems

2007 
The feasibility and generic applicability of directly integrating conventional discrete operations of cell disruption by high pressure homogenizer and the product capture by aqueous two-phase extraction (ATPE) system have been demonstrated for the extraction of intracellular L-asparaginase from E. coli. In a side-by-side comparison with the conventional ATPE process, including cell disruption, centrifugal clarification and following ATPE, purification of L-asparaginase via this novel in situ ATPE process yielded a product of L-asparaginase with a higher specific activity of 94.8 U/(mg protein) and a higher yield of 73.3%, both of which in the conventional ATPE process were 78.6 U/(mg protein) and 52.1 %, respectively. In the purification of L-asparaginase (pI=4.9), product-debris interactions commonly diminish its recovery. It was demonstrated that immediate extraction of L-asparaginase in ATPE systems when it is released at pH 5.0 during cell disruption effectively increased its recovery in the top phase due to the reduced interaction between L-asparaginase and cell debris and the reduced degradation by contaminated protease. In addition, no clarification step and/or disruptate storage are required in this in situ ATPE, which reduced the number of unit operations and thus shortened the overall process time. This novel process has a good potential for the separation of other intracellular biological products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    20
    Citations
    NaN
    KQI
    []