Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose induced rat skeletal muscle L6 cells.

2021 
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating antioxidant property in rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2NBDG) assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64 %) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in insulin signaling pathway by increased glucose uptake indicates that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    3
    Citations
    NaN
    KQI
    []