Bioconjugation of gold-polymer core-shell nanoparticles with bovine serum amine oxidase for biomedical applications.
2015
Abstract Core–shell gold nanoparticles [AuNPs], stabilized with a hydrophilic polymer, poly(3-dimethylammonium-1-propyne hydrochloride) [PDMPAHCl], have been used for the immobilization of bovine serum amine oxidase [BSAO]. The functionalized surface of the hybrid nanoparticles is pH responsive, due to the presence of aminic groups that carry out a double role: on one hand they act as ligands for the gold nanoparticle surface, allowing the colloidal stabilization and, on the other hand, they give a hydrophilic characteristic to the whole colloidal suspension. The core–shell nanoparticles [Au@PDMPAHCl] have been characterized by using UV–vis and X-ray photoelectron spectroscopy, DLS, ζ -potential measurements and by FE-TEM microscopy. BSAO enzyme can be loaded by non-covalent immobilization onto Au@PDMPAHCl nanoparticles up to 70% in weight, depending on the pH values of the environmental medium. Activity tests on Au@PDMPAHCl-BSAO bioconjugates confirm an enzymatic activity up to 40%, with respect to the free enzyme activity. Moreover, our results show that loading and enzymatic activity are rather interrelated characteristics and that, under appropriate polymer concentration and pH conditions, a satisfactory compromise can be reached. These results, as a whole, indicate that Au@PDMPAHCl-BSAO bioconjugate systems are promising for future biomedical applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
53
References
35
Citations
NaN
KQI