Energy-Efficient End-to-End Security for Software Defined Vehicular Networks

2020 
One of the most promising application area of Industrial Internet of Things (IIoT) is Vehicular Ad hoc NETworks (VANETs). VANETs are largely used by Intelligent Transportation Systems (ITS) to provide smart and safe road transport. To reduce the network burden, Software Defined Networks (SDNs) acts as a remote controller. Motivated by the need for greener IIoT solutions, this paper proposes an energy-efficient end-to-end security solution for Software Defined Vehicular Networks (SDVN). Besides SDN's flexible network management, network performance, and energy-efficient end-to-end security scheme plays a significant role in providing green IIoT services. Thus, the proposed SDVN provides lightweight end-to-end security. The end-to-end security objective is handled in two levels: i) In RSU-based Group Authentication (RGA) scheme, each vehicle in the RSU range receives a group id-key pair for secure communication and ii) In private-Collaborative Intrusion Detection System (p-CIDS), SDVN detects the potential intrusions inside the VANET architecture using collaborative learning that guarantees privacy through a fusion of differential privacy and homomorphic encryption schemes. The SDVN is simulated using NS2 & Matlab, and the simulation results provide higher energy efficiency through reduced end-to-end security communication cost and decentralized learning compared with other existing mechanisms. In addition, the p-CIDS detects the intruder with an accuracy of 96.81% in the SDVN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    13
    Citations
    NaN
    KQI
    []