A coupled discrete element and depth-averaged model for dynamic simulation of flow-like landslides

2022 
Abstract Flow-like landslides commonly happen in mountainous areas and may threaten people’s lives, damage their properties, and create negative impact on the environment. Computer modelling has become an effective tool to support landslide risk assessment and management. Models based on discrete element method (DEM) can capture micro-mechanical behaviour of soils, simulate large deformation and have been widely used for landslide simulations. However, these models are computationally too demanding for large-scale applications. On the other hand, depth-averaged models (DAM) have been well reported for simulation of flow-like landslides over large spatial domains due to its relatively high computational efficiency. To combine the advantages of both types of modelling approaches, this paper develops a novel landslide model by coupling a DEM model with a DAM for landslide simulation, in which the DEM component is employed to better simulate the complex landslide dynamics in the source area and the DAM is adopted to predict the predominantly convective movement in the runout and deposition zone. Finally, the new coupled landslide model is validated against several test cases, including a field-scale event. Satisfactory results have been obtained, demonstrating that the coupled model is able to reproduce the dynamic process of flow-like landslides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    0
    Citations
    NaN
    KQI
    []