Holographic modification of TiO2 nanostructure for enhanced charge transport in dye-sensitized solar cell

2012 
We show that the photocurrent and energy conversion efficiency of dye-sensitized solar cells can be greatly enhanced with holographic modification to the morphology of TiO2 electrode. The nanoporous electrode coated onto conducting glass was irradiated by three interfering laser beams at 1064 nm incident from the backside of the substrate. This generated two-dimensional periodic pillars of higher density in the electrode, through which the photoexcited electrons could be extracted more effectively. The cells fabricated with modified electrodes exhibited average photocurrent and efficiency of 17.14 mA/cm2 and 9.03%, while 14.91 mA/cm2 and 7.83% were obtained from the reference cells. It was attributed to the enhanced charge transport accompanied by the reduction of internal resistance of the electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    6
    Citations
    NaN
    KQI
    []