Low-Bandgap Polymer-based Infrared-to-Visible Up-Conversion Organic Light-Emitting Diodes with Infrared Sensitivity up to 1.1µm

2019 
All-organic infrared (IR)-to-visible upconversion organic light-emitting diodes (OLEDs) with an IR sensitivity up to 1100 nm were fabricated using a low-band-gap polymer as the organic IR sensitizing layer. A novel low-band-gap (1 eV) polymer, poly 4-(4,8-bis(5-(2-butyloctyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)-6,7-diethyl-[1,2,5] thiadiazolo[3,4-g]quinoxaline (PBDTT-BTQ), with a strong photoresponse in near-IR wavelengths of 700–1100 nm was first synthesized using a thiadiazolo[3,4]quinoxaline (BTQ) and a thiophene-substituted benzo[1,2-b:4,5-b2-b]dithiophene (BDTT) as the electron-withdrawing and donating building blocks, respectively. The near-IR photodetector was then fabricated for evaluating a PBDTT-BTQ as the IR sensitizing layer. The PBDTT-BTQ IR photodetector showed detectivity greater than 1011 Jones in the multispectral region (300–1100 nm) and the maximum detectivity of 3.1× 1011 Jones at the wavelength of 1000 nm due to significantly reducing dark current (8.8 × 10–6 mA/cm2 at −1...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    6
    Citations
    NaN
    KQI
    []