MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment

2020 
Abstract The three-dimensional urchin-like MoS2@C nanocomposite was successfully synthesized via one-step hydrothermal synthesis approach. The as-prepared MoS2@C nanoparticles exhibits strong absorb, high photothermal conversion ability (40.8%), superb biocompatibility and high drug loading capacity for doxorubicin (52.34%). In vitro drug release experiments show a pH,temperature and near infrared laser-triggered doxorubicinhydro release profile that enhances therapeutic anticancer effects. The drug release curve increased step by step under laser irradiation, and the accumulative delivery amount reached to 64.59%, which was about 2 times of that without laser irradiation. By using DOX-loaded nano-platform, effective synergistic photothermal therapy for cancer can be achieved and has been systematically verified in vitro. Cell viability experiments showed that the survival rate of cells with MoS2 @C-DOX was only 25.8%. Therefore, this work presents carbon-based nanoparticles with significant characteristics and is used as a highly potential therapeutic nano-platform for cancer treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    6
    Citations
    NaN
    KQI
    []