In vitro and in vivo cardioprotective and metabolic efficacy of vitamin E TPGS/Apelin

2020 
Abstract Aims Apelin and vitamin E have been proposed as signaling molecules, but their synergistic role is unknown. The aim of this work was to develop vitamin E TPGS/Apelin system to test their cardioprotective and metabolic efficacy in vitro and in vivo. Methods FDA-approved surfactant D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-1000) and Apelin complex were characterized by physico-chemical methods (CMC determination, dynamic light scattering and circular dichroism). In vitro studies were carried out on H9C2 cardiomyoblasts and isolated murine cardiomyocytes. In vivo studies were performed in isoproterenol- and high-fat diet-induced cardiac remodeling models in mice. Results We found that vitamin E TPGS/Apelin provide cardioprotective and metabolic efficacy in vitro and in vivo. In vitro studies revealed that vitamin E TPGS/Apelin reduces hypoxia-induced mitochondrial ROS production in cultured cardiomyocytes and H9C2 cardiomyoblasts. In addition, vitamin E TPGS/Apelin confers apoptotic response to hypoxic stress in cells. In a mouse model of isoproterenol-induced cardiac injury, TPGS is not able to affect cardiac remodeling, however combination of vitamin E TPGS and Apelin counteracts myocardial apoptosis, oxidative stress, hypertrophy and fibrosis. Furthermore, combination treatment attenuated obesity-induced cardiometabolic and fibrotic remodeling in mice. Conclusion Together, our data demonstrated the therapeutic benefits of vitamin E TPGS/Apelin complex to combat cardiovascular and metabolic disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    7
    Citations
    NaN
    KQI
    []