Increased expression of pro-inflammatory cytokines as a cause of lung toxicity after combined treatment with gemcitabine and thoracic irradiation

2004 
Abstract Background and purpose Preclinical evidence suggesting gemcitabine potentiates the anti-tumor effects of irradiation has resulted in clinical trials to evaluate the treatment efficacy of gemcitabine and concurrent thoracic irradiation in non-small-cell lung cancer (NSCLC). Although these studies demonstrated favorable tumor response, this combined treatment modality was accompanied by severe treatment-related toxicities predominantly of the lung. In an attempt to elucidate the determinants of lung toxicity for gemcitabine, we analyzed the expression of the pro-inflammatory cytokines TNF-α, IL-1α and IL-6 in the lung tissue of mice treated with gemcitabine and concurrent thoracic irradiation. Materials and methods Four study groups were defined: C57BL/6J mice that received neither irradiation nor gemcitabine (NT-group), those that received gemcitabine (120 mg/kg intraperitoneal, i.p.) but no irradiation (GEM-group), those that underwent thoracic irradiation (12Gy) without gemcitabine (XRT-group), and those that received both gemcitabine (120 mg/kg i.p., 2 h before irradiation) and thoracic irradiation (GEM/XRT-group). The mice were sacrificed at 1 h, 1 and 3 days, 1, 2 and 4 weeks post-treatment (p.t.). The mRNA expression of TNF-α, IL-1α and IL-6 in the lung tissue was quantified by competitive RT-PCR. The cellular origin of the cytokine expression was identified by immunohistochemistry. The cytokine expression was correlated with histopathological alterations. Results The TNF-α, IL-1α and IL-6 expression in the lung tissue of the GEM/XRT mice was clearly higher at all assessment time points compared to the NT mice (statistically significant at 1 h, 1 and 3 days, 1, 2 and 4 weeks p.t.), XRT mice (statistically significant at 1 week p.t.) or GEM mice (statistically significant at 1 h, 1 and 2 weeks p.t.). Maximal treatment-induced cytokine expression in the lung tissue of the GEM/XRT mice occurred already at 1 week p.t. (TNF-α: 30.9±5.3/IL-1α: 28.3±5.0/IL-6: 4.9±0.1 times basal level), and coincides with pathohistologically discernable interstitial pneumonitis. The elevated levels of TNF-α and IL-1α have been found to correlate with immunohistochemical staining of the bronchiolar epithelium and predominantly of inflammatory cells. Conclusions Our data provide evidence that the increased expression of pro-inflammatory cytokines and the induction of a cytokine-triggered inflammatory response may be a determinant of the observed elevated lung toxicity after concurrent treatment with gemcitabine and thoracic irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    50
    Citations
    NaN
    KQI
    []