Compositional Game Theory, Compositionally
2021
We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a concept originally from functional programming, closely related to Tambara modules, and operators to build new Arrows from old. We model equilibria as a bimodule over an Arrow and define an operator to build a new Arrow from such a bimodule over an existing Arrow. We also model strategies as graded Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A final operator builds a graded Arrow from a graded bimodule. We use this compositional approach to CGT to show how known and previously unknown variants of open games can be proven to form symmetric monoidal categories.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
13
References
0
Citations
NaN
KQI