Mechanisms of Transformation of Bulk Aluminum–Lithium Alloys to Aluminum Metal–Organic Nanowires

2018 
Fabrication and applications of lightweight, high load-bearing, thermally stable composite materials would benefit greatly from leveraging the high mechanical strength of ceramic nanowires (NWs) over conventional particles or micrometer-scale fibers. However, conventional synthesis routes to produce NWs are rather expensive. Recently we discovered a novel method to directly convert certain bulk bimetallic alloys to metal–organic NWs at ambient temperature and pressure. This method was demonstrated by a facile transformation of polycrystalline aluminum–lithium (AlLi) alloy particles to aluminum alkoxide NWs, which can be further transformed to mechanically robust aluminum oxide (Al2O3) NWs. However, the transformation mechanisms have not been clearly understood. Here, we conducted advanced materials characterization (via electron microscopy and nuclear magnetic resonance spectroscopies) and chemo-mechanical modeling to elucidate key physical and chemical mechanisms responsible for NWs formation. We further...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []