A novel analysis of excitatory currents during an action potential from suprachiasmatic nucleus neurons
2013
A new application of the action potential (AP) voltage-clamp technique is described based on computational analysis. An experimentally recorded AP is digitized. The resulting Vi vs. ti data set is applied to mathematical models of the ionic conductances underlying excitability for the cell from which the AP was recorded to test model validity. The method is illustrated for APs from suprachiasmatic nucleus (SCN) neurons and the underlying tetrodotoxin-sensitive Na+ current, INa, and the Ca2+ current, ICa. Voltage-step recordings have been made for both components from SCN neurons (Jackson et al. 2004). The combination of voltage-step and AP clamp results provides richer constraints for mathematical models of voltage-gated ionic conductances than either set of results alone, in particular the voltage-step results. For SCN neurons the long-term goal of this work is a realistic mathematical model of the SCN AP in which the equations for INa and ICa obtained from this analysis will be a part. Moreover, the method described in this report is general. It can be applied to any excitable cell.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
1
Citations
NaN
KQI