Formulation engineering of food systems for 3D-printing applications – A review

2021 
The efficient development of extrusion-based 3D-printing requires flexibility in both formulation- and process design. This task requires a fundamental understanding of the influence of material rheological properties on the extrusion process. Within this review, a qualitative toolbox for food extrusion is presented which provides guidelines for the formulation and engineering of extrusion processes in general and 3D-printing in particular. The toolbox is based on current knowledge of highly viscous food systems and the influence of individual components on the overall rheology. It includes the efficiency of particle packing, microstructure and the influence of shear rate, as well as the formation of self-supporting structures by gelation of the liquid phase and crowding of particles. Physical laws and semi-empirical equations are discussed to describe the rheology and relate relevant theory to the extrusion process. Practical information is presented, including examples of extrusion and 3D-printing of food and non-food systems. The qualitative extrusion toolbox provides a general framework for the emerging field of extrusion-based 3D-printing of food products. It can be used to identify which specific material and process parameters can be changed and how they may be altered to optimize the 3D-printing process. The general framework will assist researchers, as well as industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    247
    References
    2
    Citations
    NaN
    KQI
    []