Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation

2015 
Real time, density matrix based, time dependent density functional theory (TDDFT) proceeds through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals. It is possible to reduce the computational workload by imposing spatial cutoff radii on sparse matrices, and the propagation of the density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. Following a brief summary of our implementation, along with several benchmark tests illustrating the validity of the method, we present an exploration of the factors affecting the accuracy of the approach. In particular, we investigate the effect of basis set size and matrix truncation, the key approximation used in achieving linear scaling, on the propagator unitarity and optical spectra. Finally, we illustrate that, with an appropriate density matrix truncation range applied, the computational load scales linearly with the system size and discuss the limitations of the approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    17
    Citations
    NaN
    KQI
    []